skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "N'Gom, Moussa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Nanostructuring photocatalytic and catalytic materials substantially increases the surface‐to‐volume ratio, thereby exposing a greater number of active sites essential for enhanced catalytic efficiency. However, optimizing these efficiencies requires the non‐destructive,operandointerrogation of individual nanocrystals under realistic catalytic conditions—a capability that has long remained elusive. Here, this challenge is addressed by reporting three‐dimensional imaging of defects, crystal morphology, and strain dynamics in individual Bi2WO6(BWO) nanoflakes using Bragg coherent diffractive imaging (BCDI) underoperandotemperature, gas, and light‐driven conditions. It is demonstrated that maintaining a constant temperature of 40°C thermally activates charge carriers, likely enhancing their mobility and reducing recombination rates. Furthermore, an Argon (Ar) gas flow stabilizes the reaction environment, while a mixed Hydrogen–Nitrogen (H2+ N2) flow induces a hydrogen‐triggered semiconducting‐to‐metallic (SM) electronic phase transition accompanied by a structural transformation, as supported by density functional theory (DFT) calculations. Both DFT and BCDI analyses reveal that during the SM phase transition, a new structural phase nucleates near defects and propagates inhomogeneously. Notably, the onset of nanoscale cracking is observed, driven by localized strain accumulation and environmental cycling, which increases surface area and potentially introduces new reactive sites. These findings illustrate that combining advanced nanostructuring withoperandoimaging techniques can provide critical insights into the local structural features that govern photocatalytic performance, paving the way for the rational design of next‐generation photocatalytic materials. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026